A discontinuous Galerkin method for optimal control problems governed by a system of convection-diffusion PDEs with nonlinear reaction terms

نویسندگان

  • Hamdullah Yücel
  • Martin Stoll
  • Peter Benner
چکیده

In this paper, we study the numerical solution of optimal control problems governed by a system of convection diffusion PDEs with nonlinear reaction terms, arising from chemical processes. The symmetric interior penalty Galerkin (SIPG) method with upwinding for the convection term is used for discretization. Residual-based error estimators are used for the state, the adjoint and the control variables. An adaptive mesh refinement indicated by a posteriori error estimates is applied. The arising saddle point system is solved using a suitable preconditioner. Numerical examples are presented for convection dominated problems to illustrate the effectiveness of the adaptivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Space-Time Discontinuous Galerkin Methods for Optimal Control Problems Governed by Time Dependent Diffusion-Convection-Reaction Equations

In this paper, space-time discontinuous Galerkin finite element method for distributed optimal control problems governed by unsteady diffusion-convectionreaction equation without control constraints is studied. Time discretization is performed by discontinuous Galerkin method with piecewise constant and linear polynomials, while symmetric interior penalty Galerkin with upwinding is used for spa...

متن کامل

The Discontinuous Galerkin FEM for Convection-Diffusion Equations

Abstract. This paper is concerned with the analysis of the discontinuous Galerkin finite element method applied to nonstationary convection-diffusion problems with nonlinear convection and nonlinear diffusion. We generalize results from [2], where linear diffusion is assumed. Optimal error estimates are obtained for the L(H) norm and interelement jump terms, however due to the nonlinearity of t...

متن کامل

Adaptive discontinuous Galerkin methods for state constrained optimal control problems governed by convection diffusion equations

We study a posteriori error estimates for the numerical approximations of state constrained optimal control problems governed by convection diffusion equations, regularized by Moreau-Yosida and Lavrentiev-based techniques. The upwind Symmetric Interior Penalty Galerkin (SIPG) method is used as a discontinuous Galerkin (DG) discretization method. We derive different residual-based error indicato...

متن کامل

Adaptive Discontinuous Galerkin Approximation of Optimal Control Problems Governed by Transient Convection-Diffusion Equations

In this paper, we investigate an a posteriori error estimate of a control constrained optimal control problem governed by a time-dependent convection diffusion equation. Control constraints are handled by using the primal-dual active set algorithm as a semi-smooth Newton method or by adding a Moreau-Yosida-type penalty function to the cost functional. An adaptive mesh refinement indicated by a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Mathematics with Applications

دوره 70  شماره 

صفحات  -

تاریخ انتشار 2015